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ABSTRACT 
 

The application of partially parallel imaging techniques to regular 

clinical MRI studies has brought about the benefit of significantly 

faster acquisitions but at the cost of amplified and non-uniformly 

distributed noise, especially, for high acceleration factors.  In this 

work, denoising of the images reconstructed by the sensitivity-

encoding (SENSE) algorithm is presented. To efficiently remove 

noise and simultaneously preserve the image details, weighted total 

variation smoothing with weighted edge restoration has been 

developed. Denoising is guided by the g-factor of the SENSE 

reconstruction and image gradient that is representative of edge 

information. An automatic iteration termination scheme is 

proposed to balance denoising and edge preservation, and reduce 

the difficulty of parameter decision in conventional approaches. 

The proposed g-factor and gradient weighted denoising with edge 

restoration (g-DENOISER) method retains the image details better 

than the denoising techniques guided by only the g-factor and 

simultaneously suppresses the noise stronger than the techniques 

where g-factor was not used to adaptively adjust the denoiser 

parameters according to local noise characteristics. It can be 

effectively used to reduce noise in images acquired using high 

acceleration factors and reconstructed using SENSE. 

Keywords— SENSE, g-factor, gradient, denoising and edge 

restoration 
 

1. INTRODUCTION 
 

Partially parallel imaging (PPI) techniques [1-3] are being 

routinely used to achieve increased image resolution, decreased 

motion artifacts and to shorten scan time. However, PPI techniques 

reduce acquisition time at the cost of loss in signal to noise ratio 

(SNR). With increase in acceleration factor, the increase in noise 

can be significant thereby reducing the diagnostic quality of the 

image. Most smoothing techniques employ a low pass filter to 

preserve the signal strength in the low frequency regions, since 

noise is prevalent in the high frequency regions. However, edges 

are also stored in the high frequency region; low pass filters for 

denoising cannot distinguish between edges and noise. To protect 

edge information, anisotropic smoothing techniques such as the 

total variation model [4] and spatially varying diffusion filtering 

[5], were introduced. Though better than conventional filtering 

techniques, the anisotropic techniques can still damage the edges 

while trying to clean some excessively noisy regions or suffer from 

excessive unfiltered noise in low-SNR regions.  

There are two approaches to solve this problem. The first 

is to design filters that use different weights for smoothing 

different regions, i.e. noisier regions and regions without edges are 

smoothed more to remove noise better; less noisy regions and 

regions with edges are smoothed less to protect the edges better. 

Several techniques based on this approach have been developed [6-

8]. The second approach is to restore edge information that may be 

lost during the smoothing process. The residual, which is the 

difference of the original image and the resulting smoothed image, 

often has both noise and edge information. However, incorporating 

the residual back into the smoothing process can restore the edge 

information [9]. In this technique, after every stage of smoothing, 

the residual is added back to the original image and the new edge 

enhanced initial image is smoothed again. 

In this work, a g-factor and gradient-guided total 

variation filtering technique [10] to denoise the images and add 

back the lost information (which includes both noise and edge 

information) weighted by the g-factor (which is representative of 

the noise levels in the image) and the gradient (which is 

representative of the edge information) is introduced. An automatic 

scheme is proposed to terminate the iteration. This helps to strike a 

balance between smoothing and edge preservation, thereby 

leveling the noise distribution while still protecting edges. The 

proposed method is named the g-factor and gradient weighted 

denoising with edge restoration (g-DENOISER) technique. 

Results from experiments performed on phantom data and brain 

data are presented. 
 

2. THEORY 
 

2.1 Existing Techniques:  

The conventional TV model [7] is described by: min E[u|u0] where                      

E[u | u0] = (u u0)
2dx + | u | dx       (1) 

If the denoising problem is considered as an input-output system, 

then the input is a noisy image, u0, and the output is the denoised 

image, u which minimizes the energy functional E[u|u0].  is the 

image domain. The g-factor ‘g’ is information obtained from the 

SENSE reconstruction and can be used as a criterion for the 

minimization of the expression in the fidelity term – which is the 

first term in equation 1. To control the amount of smoothing in any 

given location in the image, the balance between the smoothing 

and fidelity terms is made locally adaptive to both the spatially 

varying noise level and the likelihood of an edge by setting  to be 

a function of both the image g-factor and gradient. Regions where 

the g-factor is higher and the gradient is weaker get smoothed more 

and regions where the g-factor is lower and the gradient is stronger 

get smoothed less. To control the type of smoothing, in [8] the 

authors proposed a modified TV model where the exponent, p, in 

the regularization term 
p

u varies spatially so the smoothing 

is isotropic or anisotropic depending on the strength of the 

gradient. Therefore, both the amount and type of smoothing can be 

made spatially adaptive [8 ] by using the minimization energy: 
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where p(x) = p(| u0(x)|) is a decreasing function of the magnitude 

of the gradient of the initial data u0 which takes on values between 

1 and 2 such that 1)(lim |)(| 0
=xp

xu
and 2)(lim 0|)(| 0

=xp
xu

.    

Therefore, the filtering is isotropic in ‘flat’ regions, and anisotropic 

elsewhere. Furthermore, the type of anisotropy varies depending 

on the strength of the gradient. At regions with very high gradient, 

i.e., likely edges, smoothing is strictly TV based and is only 

performed in the direction strictly tangential to edges. At more 

ambiguous regions with lower gradient, which could represent 

either weak edges or noise, anisotropic smoothing that is a 

combination of TV and isotropic regularization is used. In the g-

DENOISER technique, we make use of Eq. (2) to implement the 

adaptive TV filtering, but the spatially varying parameters (x) and 

p(x) will now depend on the g-factor and the gradient information.   

 One side effect of models such as (1) is that there is a 

loss of contrast, and thus a loss of edge information that occurs 

from the denoising process. In [10], Osher et al. showed that by 

taking the solution, u, of the TV model (1), adding the residual, v = 

u0-u, back to the original data u0, and using u0+v as new input for 

the TV model, one gets a new solution which is not only a 

denoised version of the original, but also has retained more edge 

information. This process can be iteratively repeated, resulting in 

images with increased noise and enhanced boundary, eventually an 

image similar to the original image. There is edge enhancement 

since, with each iteration, the input to the minimization has more 

edge information. But it is smoothed the same as it was initially, 

thereby emphasizing the edge information. This process of adding 

the edge information back is also used in the proposed g-

DENOISER technique. 
 

2.2 g-DENOISER 

 The g-DENOISER technique uses a combination of the 

modified total variation (TV) filtering as described in [8] and a 

modified version of edge restoration [10]. Both use the g-factor 

and the image gradient as guiding factors for the minimization and 

parameter estimation. The filtered image is obtained from the 

iterated minimization of the following expression: 
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where the input to each iteration, 
*m

u , is defined as follows:
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which is equivalent to the original SENSE reconstructed image 

with a weighted version of the residual (edge and noise 

information) added back. In Eq. (4), ‘ ’ denotes pixel-wise 

multiplication; g is the g-factor map as obtained from the SENSE 

reconstruction algorithm; u0 is the original SENSE reconstructed 

noisy image, M is the mask of boundary and defined by Eq. (5) 

below as explained in [5]: 
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where  is the convolution operator, G is the Gaussian 

convolution kernel,  is the value of the bin that had the most 

number of elements in the histogram of the absolute value of the 

smoothed gradient. From Eq. (5), it can be seen that M is close to 1 

at regions having high gradient, and tends to 0 at flat regions. From 

Eq. (4), it can be seen that only the difference near the edge regions 

that have a low g-factor is added back. This definition makes sure 

that only the edge is restored. The noise in the flat regions can be 

efficiently removed. In Eq. (3), p(x) is defined as 2 – M. This 

definition follows the requirement that p(x) tends to 1 at regions 

near edges, and tends to 2 at flat regions. This definition makes the 

type of smoothing adaptive; (x) is used to adaptively regulate the 

amount of smoothing, hence (x) is defined as:   

  ( )
( ) ( )xgxp

x =           (6) 

 where  is a parameter set to an appropriate level depending on 

the image. According to Eq. (6), (x) is smaller where g-factor 

higher i.e. at regions needing more smoothing. With a smaller (x), 

the smoothing term is emphasized more and hence a smoother 

result will be generated. The partial differential equation (PDE) 

defined by Eq. (3) can be solved by iteratively solving its Euler 

Lagrange expansion as derived in reference [8]. 
 

2.3 Flexibility of choice of parameters: 

 From Eq. (3) & Eq. (6), there is only one parameter, . 

However, there are two other numbers of iteration that need to be 

defined. One is the number of iterations required to solve the PDE 

in Eq (3)(iteration 1), the other is for the iteration of edge 

restoration (iteration 2).  A smaller  implies more smoothing in 

the overall image. In g-DENOISER, the choice of  is more 

flexible because over-smoothing is compensated. If  is too small, 

and the edge is damaged, the edge is added back during the 

iterations of edge restoration. The range of  chosen is 0.5 ~ 20. 

Similar to the explanation of the flexibility of the choice of , the 

choice of number of iterations ‘N’ for iteration 1 is also flexible. 

Hence ‘N’ can be predefined. A larger ‘N’ will take longer 

computation time hence ‘N’ is fixed to be 30 in our 

implementation. Typically, values less than 100 work well.   
 

2.4 Termination Criterion: 

 The number of iterations of iteration 2, which is for edge 

restoration, can be decided automatically. Since g-factor 

demonstrates the noise distribution in the image reconstructed by 

SENSE, it is understood that the removed noise should have a 

pattern similar to that of the g-factor. Hence the statistical 

similarity between the g-factor map and the removed noise is used 

for determination of the termination criterion. Before edge 

restoration, because the image is smoothed guided by both, the g-

factor and gradient, the correlation between the g-factor map and 

the difference map (difference between the original noisy SENSE 

reconstructed image and the filtered image) is large at regions near 

the edges. With the increase in number of iterations of restoration, 

more edge information is added back and the correlation at the 

regions near edges reduces even more. The correlation values are 

compared with each iteration and the iterations are terminated 

when the correlation value increases to a value larger than the 

previous value. 
 

2.5 Image Evaluation Criterion: 

 Image quality evaluation is not an easy task. The 

question of whether an image with more edge information and 

more noise is better than an image with reduced noise but damaged 

edge, or vice versa has no definite answer. To more accurately test 

the performance of the proposed method, two different methods 

from different points of view were used to evaluate the image 

quality. 1) Relative error defined as the ratio of the L2 norm 

computed from the difference images (difference between the 

outputs of each denoising technique and the original noiseless 
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image), to the L2 norm computed from the true original noiseless 

image. This value shows the similarity of the result and the gold 

standard. The smaller the number, the more similar (i.e. better in 

the sense of similarity) the result is to the original, true, noiseless 

image; 2) Image sharpness computed as defined by the authors in 

[12]. The local maximum and minimum intensity values across a 

boundary in the denoised were determined as Imax and Imin. The 

distance,‘d’ between 0.8(Imax - Imin) + Imin and 0.2(Imax - Imin) + Imin 

across the profile was measured and the sharpness for that region 

evaluated as 1/d (mm
-1

). This value demonstrates the edge 

protection. A larger number means a sharper image, (i.e. better in 

the sense of edge protection). 
 

3. METHODS 

 

Two different sets of experiments were performed to demonstrate 

the proposed method. Phantom images were simulated and 

processed with a set of parameters,  and N. Reduction factor 3 

was simulated. A set of T2-weighted brain images were acquired 

on a 3T Trio scanner (Siemens Medical Solutions, Erlangen, 

Germany), with an 8-channel head coil (Invivo Diagnostic 

Imaging, Gainesville, Florida) and a dual contrast 2D turbo spin 

echo sequence (FOV: 220x165, matrix size: 320x245, slice 

thickness: 2mm; TR 4000ms, TE1/TE2: 12/99ms, ETL: 14, 

bandwidth: 130 Hz/pixel). Full k-space data was acquired and a 

SENSE acquisition/reconstruction with a reduction factor of 3 was 

simulated with this dataset to show the performance of the new 

technique. This brain dataset was corrupted with additional 

complex Gaussian noise added to it to show the effectiveness of 

the technique. 

The sensitivity maps for SENSE reconstruction and g-

factor estimation were obtained from the full k-space data, as the 

raw channel data normalized by the square root of sum of squares 

image. Edge detection for all experiments was performed using the 

Perona-Malik anisotropic diffusion method [5], with the initial low 

pass filtering being performed using a Gaussian filter.  

The termination criterion was implemented by 

comparing the correlations regionally within the image. The 

difference image and the g-map were both divided into many 

regions of size close to 5x5 (depending on matrix size). Correlation 

was computed for every region between the mean of the g-map and 

the standard deviation of the difference image in that region. All 

regions that had a correlation of greater than 50 percent were 

counted for the criterion. With each iteration, the number of 

regions with a correlation greater than 50% was compared with 

that obtained from the previous iteration. This process was 

repeated till the number increased to a value more than the 

previous iteration. The edge restoration was then stopped.  
 

4. RESULTS 

 

The results for phantom and brain data are presented. A modified 

Shepp Logan phantom and an arbitrary 6-channel array (3 elements 

on top and 3 elements at the bottom) were simulated and used for 

SENSE reconstruction (see Fig 1). The first stage of low pass 

filtering for the edge detection was performed using a Gaussian 

filter. For the g-DENOISER technique, the parameters used were 

in the range:  = 0.5 to 20 and N = 30. Different values of  were 

tried to illustrate the robustness of the algorithm to the choice of 

parameters. The edge information, also weighted by g-factor was 

added back and processed till the termination criterion was 

satisfied to give the final results. The same dataset was also 

processed using g-factor guided denoising alone where identical 

values of  were tried and N varied from 30 to 90 to give the 

optimum result for this case. Also, the dataset was processed with 

gradient weighted filtering with edge restoration, where the g-

factor map was set to unity during edge restoration. Therefore,  

was the same but the edge information being added back was not 

g-factor weighted. This was also done for  ranging from 0.5 to 20 

and N = 30. All results shown are for  = 5.  Figures 1 (d), (e) and 

(f) are the outputs of the images denoised using the new g-

DENOISER, g-factor alone and gradient weighting alone 

respectively. The arrow indicates the region where there is better 

edge restoration in the new technique. The new combined 

technique clearly has a better denoising performance with edge 

restoration capability than either of the two techniques 

independently. Table 1 shows the relative error defined by the ratio 

of the L2 norm computed from the difference images obtained 

from the original SENSE reconstructed image, the new technique, 

g-factor guided denoising alone and gradient weighted filtering 

with edge restoration alone, to the L2 norm computed from the true 

original noiseless image. As seen, the g-DENOISER technique has 

the least value of the computed L2 norm ratio. The results indicate 

that the image denoised using the new technique definitely is the 

closest to the truth than the gradient weighted TV filtering with 

edge restoration alone or the g-factor guided TV filtering alone.  

 

a)  b)  

c)  d)  

e)  f)  

Figure 1. Phantom results (a) Sensitivity profile of one of the 

hypothetical coil elements (b) Original SENSE reconstructed noisy 

image (c) g-factor map generated for a reduction factor 3 (d) 

Output of the new g-DENOISER technique (e) Output of denoising 

using g-factor alone (f) Output of denoising using gradient alone. 
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  Table 1. Relative error  
 

 

Figure 2 illustrates the results of the denoising algorithm applied to 

the brain dataset. (a) shows the results of the g-DENOISER 

technique, (b) shows that of denoising using g-factor guided TV 

filtering alone, (c) shows the images denoised using gradient 

weighted edge restoration alone. (d) shows the zoomed in version 

of the region where the 2 arrows are. The arrows depict edge 

details where the images denoised using the proposed technique 

are visibly better than either of the two techniques used 

independently.    The   relative  error  computed   for  our  proposed  
 

a)  b)  

c)  

    

    

d)  

Figure 2. Brain data results (a) Output from the g-DENOSER 

technique (b) Output from denoising using g-factor alone (c) 

Output from denoising using gradient weighting alone (d) Zoomed 

in regions from all the above three images indicating the ROI 

(where the arrows are). 
 

 

Figure 3. Image sharpness evaluation 
 

technique, g-factor guided filtering alone and gradient weighted 

edge restoration alone are 3.37, 3.40 and 3.48 respectively. Figure 

3 demonstrates the sharpness of the image computed as explained 

in the theory section from reference [12]. As seen from this table, it 

is noted that the g-DENOISER technique has better edge definition 

than either of the two techniques applied independently.      
 

5. CONCLUSION  

 

In this work, we have presented an efficient denoising technique g-

DENOISER with a fairly insensitive choice of parameters for a 

given acceleration factor and a very robust termination criterion 

which accounts for the noise levels in the input image, and some 

ways to evaluate the image quality. This technique can be applied 

to improve the quality of images acquired using SENSE with high 

reduction factors. Work is in progress to evaluate the robustness of 

this algorithm at different reduction factors for multiple 

applications and to come up with a better image quality evaluation 

criteria.  
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DENOISER 

g-factor 

guided 

filtering 
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filtering  
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guided TV 

4.42 

(m) 
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